> Back to seminars list


Thursday, January 16th, 2020
Centre de recherche - Paris - Amphithéâtre Hélène Martel-Massignac (BDD)

Precision of Tissue Patterning is Controlled by Dynamical Properties of Gene Regulatory Networks

During development, gene regulatory networks allocate cell fates by partitioning tissues into spatially organised domains of gene expression. How the sharp boundaries that delineate these gene expression patterns arise, despite the stochasticity associated with gene regulation, is poorly understood. We show, in the vertebrate neural tube, using perturbations of coding and regulatory regions, that the structure of the regulatory network contributes to boundary precision.

This is achieved, not by reducing noise in individual genes, but by the configuration of the network modulating the ability of stochastic fluctuations to initiate gene expression changes. We use a computational screen to identify network properties that influence boundary precision, revealing two dynamical mechanisms by which small gene circuits attenuate the effect of noise in order to increase patterning precision.

These results highlight design principles of gene regulatory networks that produce precise patterns of gene expression.

Event poster


Edgar Herrera Delgado

Francis Crick Institute, London

Invited by

Jean-Léon MAITRE
Domain 2 - UMR 3215 / U934 - Genetics and Developmental Biology

Institut Curie